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One can thus arrive at the set of Heesch groups noting to 
what the given aspect groups belongs. 

I wish to thank Professor R. D. Spence for his valuable 
assistance and suggestions. 
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The transformation laws for the weighting and covariance matrices of the components of the atomic vibra- 
tion tensors are derived. It is shown that the use of unit-weight matrices in the least-squares determination of 
the rigid-body vibration tensors TLS from the atomic vibration components leads to incompatible results 
when the TLS parameters are refined in different Cartesian coordinate systems. Numerical results for some 
molecules showed that the differences in the obtained components of TLS usually lie within the range of two 
standard deviations. If the covariances of the atomic vibration components are taken into account in some 
simple form the incompatibilities vanish. 

The components of the rigid-body vibration tensors TLS 
are usually determined from the components of the atomic 
vibration tensors Ur by means of the least-squares method. 
In the majority of cases a Cartesian coordinate systern and 
unit weights for the components U, ~k are used. With the 
structure of lithium succinate (Klapper & Kiippers, 1973) 
we first noticed that the principal components of the libra- 
tion tensor L were not uniquely determined when it was 
refined in two different Cartesian coordinate systems and 
unit weights were employed. The differences found between 
the respective principal components could not be ascribed 
to rounding-off errors. In this paper we shall give further 
examples where this happens. 

Discrepancies of this type arise because the unit matrix 
as weighting matrix does not transform into the unit matrix 
under rotation of axes. In an earlier paper (Scheringer, 
1966a) - hereafter referred to as SCHE - we stated the 
transformation law without proof for the 6 x 6 weighting 
matrices of the components U, ~k when the base vectors were 
transformed. Hirshfeld & Shmueli (1972) have recently 
derived the transformation law for the respective 6 x 6 co- 
variance matrices by reducing it to the transformation law 
of a 4th rank tensor. In this paper we want to show first 
how the transformation law can be obtained simply from 
the basic equations of the least-squares method. 

In SCHE we showed that the weighting matrix for the 
refinement of the parameters TLS should be the normal 
matrix M of a structure-factor least-squares refinement of 
the components U[ k. The covariance matrix C is then pro- 

portional to M-1. We now assume that in the last cycle of 
the structure-factor refinement we have only refined the 6n 
independent components U~ k of the n atoms of the (nearly) 
rigid molecule, i.e. we neglect all covariances to other types 
of parameters. Then M and C consist of n 2 6 x 6 blocks. 
We define the change of the coordinate system by the trans- 
formation 

X'= AX (1) 

of the (contravariant) components of a vector X in direct 
space. Then the (contravariant) components U~ k of the rth 
atom transform according to 

U~ = AUrA T, (2a) 

(Scheringer, 1966b). If we now arrange the 6 independent 
components U, s~ in a 6 x 1 column matrix V, in the sequence 
11, 22, 33, 12, 13, 23 then, by rearranging the terms in equa- 
tion (2a), it can be shown that the transformation law 

V~ = LV, (2b) 

corresponds to the law (2a). The elements of the 6 x 6 ma- 
trix L are given in SCHE. (Formally, L is obtained by re- 
ducing the 9 x 9 outer product A x A to a 6 x 6 matrix). The 
transformation laws (2a) and (2b) also hold for the shifts 
e~ k of the components U~ ~. Let the normal equations for 
refining the components U, ~k from diffraction data in the 
two coordinate systems be 

M a = N ,  M'a '=N' ,  (3) 
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where e and e' are the 6n x 1 column matrices of the shifts. 
Let G be a 6n × 6n block-diagonal matrix with 6 x 6 blocks 
L. Then we obtain from equation (2b) 

e ' = G e ,  e = G - l e ' .  (4) 

From equations (3) and (4) we obtain 

G r - I M G - I ~ ' =  Gr- IN , (5) 

and hence for the weighting matrices 

M ' =  Gr -XMG - t ,  (6) 

and for the covariance matrices 

C ' = G C G  'r (7) 

Since G is 6 x 6 block-diagonal, equations (6) and (7) imply 
that for any 6 x 6 block of M and C that refers to two atoms 
r and s 

M'66 = LT-1M66 L - t ,  (8) 
and 

066 = L066 L r, (9) 

cf. SCHE (9). The equations (6) to (9) represent the trans- 
formation laws for weighting and covariance matrices of 
the thermal data U, ~k. The equations are valid for any type 
of transformation (1) and are not restricted to orthogonal 
ones (A r =  A-l).  

Usually the full 6n x 6n covariance matrices are not used 
for the refinement of the TLS parameters. Thus it is of 
interest to use approximate matrices in Cartesian coordi- 
nate systems which remain invariant under rotation of axes, 
i.e. we should postulate M ' = M  and C ' = C  if A r = A  -1. 
One such invariant (non-diagonal) weighting matrix M66 , 

which is likely to apply to the components U~ k as data, is 
the matrix Q, of SCHE (8). Hirshfeld & Shmueli (1972) 
showed that there are invariant 6 x 6 covariance matrices 
which are characterized by two parameters S and r/ and 
which can be derived from isotropic Cartesian tensors of 
4th rank. The weighting matrix Q, of SCHE (8) can be 

shown to correspond to the invariant covariance matrix 
with S = Z ;  -2 ( Z , = n u m b e r  of electrons of atom r) and 
r/= -¼.  

The main point which concerns the unit matrix as a 
weighting (covariance) matrix is that it does not transform 
into the unit matrix for orthogonal transformations (1), 
i.e. if M = C = E  then M'-¢ E, C'V:E for AT=A -1. This fol- 
lows from the fact that, for S = 1, no value of r/can be found 
which reduces Hirshfeld & Shmueli's matrix (1) to the 
unit matrix. Hence the parameters TLS will always attain 
incompatible values when they are refined in different Car- 
tesian coordinate systems and unit weights are employed. 
However, Hirshfeld & Shmueli found with an example 
that the results obtained with unit weights did not signi- 
ficantly differ from those obtained with invariant weighting 
(covariance) matrices. 

Initially, several examples of the transformation (9) for 
066 = E were computed and the unit matrix was found to be 
considerably altered by the transformation. In one example 
the diagonal elements of the transformed matrix C66 at- 
tained values between 1-65 and 0"63, the off-diagonal ele- 
ments in the upper left 3 x 3 block took values up to - 0-37, 
and the remaining off-diagonal elements took values up to 
-0 .27 .  These elements of the transformed unit matrix cor- 
respond, in order of magnitude, to those of a covariance 
matrix with r /=0 and a monoclinic angle of 110 ° [Hirshfeld 
& Shmueli, 1972, equation (2)]. 

In order to study to what extent the non-invariance of the 
unit matrix influences the results of the refinement, we have 
refined the parameters TLS of 11 molecules with unit 
weights in 6 different Cartesian coordinate systems. Each 
system is characterized by 3 Eulerian angles ~0, 0, ~ (for 
their definition see Margenau & Murphy,  1965, p. 354). 
Positional and thermal parameters of the atoms were trans- 
formed to the rotated systems. For the refinement of the 
TLS parameters a modified version of Schomaker & True- 
blood's (1968) program was used. The results for 6 mole- 
cules are given in Table 1. Since the trend of the deviations 

Table 1. Principal components L1, LE, La and estimated standard deviations a(L~) [in (°)2] of the libration L as determined 
from refinements of  the TLS parameters in six different Cartesian coordinate systems 

Each system is described by three Eulerian angles q~, 0, ~,, which have the following values (in °): system I (0,0,0); II (0,45,45); 
III (30, 90, 60); IV (45, 60,0); V (90, 60, 30); VI system of principal components Lt (angles not computed). Amax is the maximum 
deviation found between any two respective components in different coordinate systems. 

Lithium succinate (Klapper & Ktippers, 1973) 

Dichlorodulcitol (Simon & Saswiri, 1971) 

Dibromodulcitol (Simon & Sasv~iri, 1971) 

Ammonium oxalate perhydrate (Pedersen, 1972) 

Lidocain hydrohexafluoroarsenate (Hanson, 1972) 

Azobisisobutyronitrile (Argay & Sasv/tri, 1971) 

I II III IV V VI Amax a(Lt) 
89"7 75"6 81"3 85-0 79-8 79"7 14-2 12"2 

0"5 0"2 0"2 - 1-5 0"1 - 1-8 2"3 1-3 
- 1 4 " 9  - 1 2 " 6  - 1 2 " 5  - 1 3 " 6  - 1 2 " 5  - 1 2 " 0  2"9 2-9 

10-3 10-8 11"0 12"4 10"3 10"3 2"1 0"9 
8.7 8"9 9"5 9"7 9"2 9"6 1"0 1"5 
4"4 4"5 4"5 4"5 4"0 4"8 0-8 0"8 

13"2 14"6 11"7 17"7 16"0 16"2 4"3 4"5 
5"7 4"2 7"9 5"7 4"1 3"8 3"8 2"8 

- 3"3 0"5 - -  3 " 9  - 0 " 7  - 3 " 1  - 2-1 4"4 3"4 

88"2 94"2 87"4 90"6 92"6 83"7 10"5 10"8 
11"1 11"0 10"5 11"1 10"8 10"9 0"6 0"8 

- 4 " 1  - 9 " 9  - 1 " 9  - 7 - 3  - -  7"5 0"3 10-2 10"7 

178"5 1 7 9 " 2  164-2 1 7 0 " 6  1 6 6 " 3  165"2 15'0 17"7 
93"4 93"1 102"8 87"2 92"6 92"1 15"6 17"6 
46"3 45"0 46"3 35"0 34"2 34"5 12"1 16"8 

34"9 34"2 34"2 35"6 35"5 33"8 1"8 2"8 
8"8 8"8 8"2 8"8 9"0 8"7 0-8 1"2 
2"4 1"4 2"0 2"6 1"0 1"5 1"6 1"6 
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is much the same for all TLS components, we have only 
listed the principal components L~ of the libration tensor, 
and their standard deviations. Also, the maximum devia- 
tions found between any two respective components in 
different systems are listed under the heading A . . . .  Although 
these maximum deviations attain values up to 30 % of the 
largest principal component L~ of a given molecule, only 
once do they exceed two standard deviations. As can be 
seen from Table 1 the trend of the values of Amax(Ll) and 
o'(L3 is much the same. The o-(L3 are computed from stan- 
dard statistical formulae, but they do, of course, not only 
contain statistical errors of the observed components U¢ k, 
but also systematic experimental errors and insufficiencies 
of the rigid-body model. That insufficiencies of the rigid- 
body model do indeed influence the standard deviations 
a(L3 can be seen from the fact that in those cases where a 
negative value of L~ was computed, a(L3 is fairly large. 

To sum up: 
(1) There is a definite influence of the choice of the (Car- 

tesian) coordinate system - or, equally, of the choice of the 
weighting system - upon the values obtained for the com- 
ponents of TLS, but the variation of the results will rarely 
exceed two standard deviations. Thus in most cases this 
impact does not seem to cause much trouble. In this sense 
we can confirm Hirshfeld & Shmueli's (1972) conclusion. 

(2) The variation of the results obtained in different (Car- 
tesian) coordinate systems is more or less proportional to 
the magnitude of the calculated standard deviation, no 
matter what the reason for a possible large value of the 
standard deviation may be. Hence not only the choice of 
the coordinate system - or the choice of the weighting ma- 

trix - but also the standard of the TLS refinement has an 
effect on the scattering of the final values of the parameters 
TLS. 

(3) In order to obtain (and publish) unique results the use 
of a covariance (weighting) matrix, which remains invariant 
under changes of the coordinate system, is recommended. 
Simple covariance matrices in a Cartesian system are ob- 
tained either with r/= 0, which is diagonal, or with 1/= -¼,  
which is not diagonal but can be better defended on physical 
grounds. 

We are indebted to F. L. Hirshfeld and U. Shmueli for 
supplying the information from their paper before it was 
published. 
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An algorithm is given for determining the radius of a sphere inscribed in the cavity between four different 
spheres arbitrarily separated. 

When considering the packing of atoms and molecules in 
a crystal it is often necessary to calculate the sizes of the 
cavities remaining in the structure. This question can be 
paraphrased as: find the radius of the sphere inscribed in 
the cavity between four tangent spheres. 

If the four spheres are also mutually tangent, then the 
problem has an elegant solution in terms of the curvatures 
a, fl, ), and d (the reciprocals of the radii) of the four known 
spheres and the curvature e of the inscribed (or circum- 
scribed) sphere. These are related by ( a + f l + 7 + 6 + e )  z= 
3(0~2+flznt-y2+dz+J). In N dimensions the general rela- 
tionship N(~ct z) = (~c02 has been proved by Coxeter (1952). 

If, however, the four spheres 1, 2, 3 and 4 are not mutu- 
ally tangential but have radii rl, r2, r3, and r4 and their 
centres at distances dlz, di3, etc. apart, no formula has been 
found in the literature and recourse to a computational 
procedure was necessary. 

Five points, the centres of the five spheres, define four 
vectors, 12, 13, 14 and 15. These four vectors involve 10 
distances between the five points which would be sufficient 

to define a simplex (generalized tetrahedron) in four dimen- 
sions. The four-dimensional volume V of this simplex is 
given by a determinantal equation: 

0 d22 dlZs 
d22 0 d23 

- (96)  2V 2= d~3 d2a 0 
d24 d2a da24 
d~5 d~5 dis 

1 1 1 

dlZ4 d~t5 1 
dL d,~ 1 
d24 d]s 1 
0 d~s 1 

d2s 0 1 
1 1 0 

If our figure is not four-dimensional, but is degenerate 
and three-dimensional, as real configurations of atoms of 
course are, then this determinant will be zero. This rela- 
tionship then enables us to find (from a quadratic equa- 
tion) any one of the ten distances dlj in terms of the others. 

This can be used for at least two purposes. The first is: 
given the three distances of a point P from three fixed 
points A, B and C (at given distances from each other) and 
also the corresponding three distances of a point Q from 
the same three points, find the distance PQ. The two solu- 


